Low Energy Photon Therapy

 

 Low Energy Photon Therapy

 

You may be asking yourself, “That does this type of therapy do? Put simply, it reduces pain and stimulates healing. In fact LEPT, also known as Low Energy Photon Therapy, has been clinically shown to accelerate healing by many peoples. At this time, no side effects have been found. In fact, Russian scientists exposed healthy tissue to LEPT continuously for 30 days and found no damage to the tissue. The body simply does not absorb what it cannot use.

 

How does it work? LEPT uses the body’s natural responses to certain wavelengths of light to accelerate healing. We have all experienced the effects of light on our bodies in many ways. Have you ever spent too much time in the sun and been burned? That is your skin’s physical response to ultra violet light. Have you ever been told that your body can convert sunlight into vitamin D? Again, light is creating a physical change in the body. Even the eyes themselves operate on a chemical reaction to light. LEPT uses specific frequencies of red and near infrared light that have been found to stimulate a healing response in the body. Some of the specific effects that LEPT has on the cells include, increasing RNA synthesis (essential for growing new cells), collagen production (needed for healing many injuries), and stimulation mitochondria (the power source of the cell.) Although we are all exposed to these wavelengths through the sum, if these frequencies are isolated the healing effects are compounded.

 

More convenient LED clusters with specific wavelength use for LEPT. The modern LEDs are a powerful, versatile therapeutic light devices utilizing both infra-red and super-luminous red light for application on human body. Light energy at the correct wavelengths assists the body in correcting itself. Over 40 years of scientific studies at top universities around the world have shown that light at specific wavelengths and stimulate the body to self-correct.

 

Light Therapy

 

Light therapy has been shown in over 40 years of independent research worldwide to deliver powerful therapeutic benefits to living tissues and organisms. Both visible red and infrared light have been shown to effect at least 24 different positive changes at a cellular level. Visible red light, at a wavelength of 660 nanometers penetrates tissue to a depth of about 8-10 mm. It is very beneficial in treating problems close to the surface such as wounds, cuts, scars, trigger and acupuncture points and is particularly effective in treating infections. Infrared light (904nm) penetrates to a depth of about 30-40 mm which makes it more effective for bones, joints, deep muscle, etc.

 

The diverse tissue and cell types in the body all have their own unique light absorption characteristics; that is, they will only absorb light at specific wavelengths and not at others. For example, skin layers, because of their high blood and water content, absorb red light very readily, while calcium and phosphorus absorb light of a different wavelength. Although both red and infrared wavelengths penetrate to different depths and affect tissues differently, their therapeutic effects are similar.

 

Depth of penetration is defined as the depth at which 60% of the light is absorbed by the tissue, while 40% of the light will continue to be absorbed in a manner that is less fully understood. Treating points with Lights can have a dramatic effect on remote and internal areas of the body through the stimulation of nerves, acupuncture and trigger points that perform a function not unlike transmission cables.

 

At this time, research has shown no side effects from this form of therapy. Occasionally, one may experience an increase in pain or discomfort for a short period of time after treating chronic conditions. This occurs as the body reestablishes new equilibrium points following treatment. It is a phenomenon that may occur as part of the normal process of recovery.

 

Light therapy has also been given the name “phototherapy”. A study done by the Mayo Clinic in 1989 suggests that the results of light therapy are a direct effect of light itself, generated at specific wavelengths, and are not necessarily an function of the characteristics of coherency and polarization associated with lasers. In a study entitled Low-Energy Laser Therapy: Controversies and New Research Findings, Jeffrey R. Basford, M.D. of the Mayo Clinic’s Department of Physical Medicine and Rehabilitation, suggests that the coherent aspect of laser may not be the source of its therapeutic effect. He states “firstly, the stimulation effects (from therapeutic light) are reported following irradiation with non-laser sources and secondly, tissue scattering, as well as fiver optic delivery systems used in many experiments rapidly degrade coherency. Thus any effects produced by low-energy lasers may be due to the effects of light in general and not to the unique properties of lasers. This view is not difficult to accept when it is remembered that wavelength dependent photobiochemical reactions occur throughout nature and are involved in such things as vision, photosynthesis, tanning and Vitamin D metabolism. In this view, laser therapy is really a form of light therapy, and lasers are important in that they are convenient sources of intense light at wavelengths that stimulate specific physiological functions (Lasers in Surgery and Medicine 9:1-5, Mayo Clinic, Rochester, Minnesota, 1989).

 

LED’s and LASERS are no more than convenient devices for producing eleftromagnetin radiation at specific wavelengths, and in addition to the one already cited, several other studies establish that it is the light itself at specific wavelengths that is therapeutic in nature and not the machine which produced it. For example, Kendric C. Smith at the Department of Radiation Oncology, Stanford University School of Medicine, concludes in an importatant article entitled The Photobiological Effect of Low Level Laser Radiation Therapy (Laser Therapy, Vol. 3, No. 1, Jan – Mar 1991) that “1) Lasers are just convenient machines that produce radiation. 2) It is the radiation that produces the photobiological and/or photophysical effects and therapeutic gains, not the machines. 3) Radiation must be absorbed to produce a chemical or physical change, which results in a biological response.”

 

The equation between the machine and the biological response is a common error often made by those who wish to promote the commercial interests of low-energy laser technology. Light radiation must be absorbed to produce a biological response. All biological systems have a unique absorption spectrum which determines what wavelengths of radiation will be absorbed to produce a given therapeutic effect. The visible red and infrared portions of the spectrum have been shown to have highly absorbent and unique therapeutic effects in living tissues.

 

What is the Difference between LED’s and LASERS?

 

Light Emitting Diodes (LEDs) are another form of light therapy that is a relatively recent development of the laser industry. LEDs are similar to lasers inasmuch as they have the same healing effects but differ in the way that the light energy is delivered. A significant difference between lasers and LEDs is the power output. The peak power output of LEDs is measured in milliwatts, while that of lasers is measured in watts. However, this difference when considered alone is misleading, since the most critical factor that determines the amount of energy delivered is the duty cycle of the device.

 

LEDs do not deliver enough power to damage the tissue, but they do deliver enough energy to stimulate a response from the body to heal itself. With a low peak power output but high duty cycle, the LEDs provide a much gentler delivery of the same healing wavelengths of light as does the laser but at a substantially greater energy output. For this reason, LEDs do not have the same risk of accidental eye damage that lasers do.

 

Moreover, LEDs are low coherent noncollimated and they generate a broader band of wavelengths than do the single-wavelength laser. Non-collimation and the wide-angle diffusion of the LED confers upon it a greater ease of application, since light emissions are thereby able to penetrate a broader surface area. Moreover, the multiplicity of wavelengths in the LED, contrary to the single-wavelength laser, may enable it to affect a broader range of tissue types and produce a wider range of photochemical reactions in the tissue.

 

If LED disperses over a greater surface area, this results in a faster treatment time for a given area than laser. The primary reason that chose the LEDs over lasers is that LEDs are safer, more cost effective, provide a gentle but effective delivery of light and a greater energy output per unit of surface area in a given time duration.

 

What does light therapy actually do?

 

Light therapy can:

 

Increase vascularity (circulation) by increasing the formation of new capillaries, which are additional blood vessels that replace damaged ones. New capillaries speed up the healing process by carrying more oxygen as well as more nutrients needed for healing and they can also carry more waste products away.

 

Stimulate the production of collagen Collagen is the most common protein found in the body. Collagen is the essential protein used to repair damaged tissue and to replace old tissue. It is the substance that holds cells together and has a high degree of elasticity. By increasing collagen production less scar tissue is formed at the damaged site.

 

Stimulates the release of adenosine triphosphate (ATP) ATP is the major carrier of energy to all cells. Increases in ATP allow cells to accept nutrients faster and get rid of waste products faster by increasing the energy level in the cell. All food turns into ATP before it is utilized by the cells. ATP provides the chemical energy that drives the chemical reaction of the cell.

 

Increase lymphatic system activity Edema, which is the swelling or natural splinting process of the body, has two basic components. The first is a liquid part which can be evacuated by the blood system and the second is comprised of the proteins which have to be evacuated by the lymphatic system. Research has shown that the lymph vessel diameter and the flow of the lymph system can be doubled with the use of light therapy. The venous diameter and the arterial diameters can also be increased, This means that both parts of edema (liquid and protein) can be evacuated at a much faster rate to relieve swelling.

 

Increase RNA and DNA synthesis This helps damaged cells to be replaced more promptly.

 

Reduce the excitability of nervous tissue The photons of light energy enter the body as negative ions. This calls upon the body to send positive ions like calcium among others to go to the area being treated. These ions assist in firing the nerves thereby relieving pain.

 

Stimulate fibroblastic activity which aids in the repair process Fibroblasts are present in connective tissue and are capable of forming collagen fibers.

 

Increase phagocytosis, which is the process of scavenging for and ingesting dead or degenerated cells by phagocyte cells for the purpose of clean up. This is an important part of the infection fighting process. Destruction of the infection and clean up must occur before the healing process can take place.

 

Induce a thermal like effect in the tissue the light raises the temperature of the cells although there is no heat produced from the diodes themselves. (The LED cluster will be warm to the touch because of the electronics needed to power the many diodes.)

 

Stimulates tissue granulation and connective tissue projections, which are part of the healing process of wounds, ulcers or inflamed tissue.

 

Stimulate acetylcholine release Acetylcholine causes cardiac inhibition, vasodilation, gastrointestinal peristalsis and other parasympathetic effects.

 

REFERENCES

 

The Phobiological Basis of Low Level Laser Radiation Therapy The Photobiological Basis of Low Level Laser Radiation Therapy, Kendric C. Smith; Stanford University School of Medicine; Laser Therapy, Vol. 3, No. 1, Jan – Mar 1991

 

Low-Energy Laser Therapy: Controversies & Research Findings, Jeffrey R. Basford MD; Mayo Clinic; Lasers in Surgery and Medicine 9, pp. 1-5(1989)

 

New Biological Phenomena Associated with Laser Radiation, M.I. Belkin & U. Schwarts; Tel Aviv University; Health Physics, Vol. 56, No. 5, May 1989; pp. 687-690

 

Macrophage Responsiveness to Light Therapy, S Young PhD, P Bolton BSc, U Dyson PhD, W Harvey PhD, & C Diamantopoulos BSc; London: Lasers in Surgery and Medicine, 9; pp. 497-505 (1989)

 

Photobiology of Low-Power Laser Effects, Tina Karu PhD; Laser technology Centre of Russia; Health Physics, Vol. 56, No. 5. May 89, pp. 691-704

 

A Review of Low Level Laser Therapy, S Kitchen MSCMCSP & C Partridge PhD; Centre for Physiotherapy Research, King’s College London Physiotherapy, Vol. 77. 3, March 1991

 

Systemic Effects of Low-Power Laser Irradiation on the Peripherial & Central Nervous System, Cutaneous Wounds &

 

Burns, S Rochkind MD, M Rousso MmD, M Nissan PhD, M Villarreal MD, L Barr-Nea PhD. & DG Rees PhD,

 

Lasers in Surgery and Medicine, 9; pp. 174-182(1989)

 

Use of Laser Light to Treat Certain Lesions in Standardbreds, L.S McKibbin DVM, & D Paraschak BSc., MA; Mod

 

Veterinary Practicem March 1984, Sec. 3, p. 13

 

Low Level Laser Therapy: Current Clinical Practice In Northern Ireland, GD Baxter BSc, AJ Bet, MA, JM AtienPhD, J Ravey PhD; Blamed Research Centre University Ulster Physiotherapy, Vol. 77, No. 3, March 1991

 

The Effects of Low Energy Laser on Soft Tissue in Veterinary Medicine, LS McKibbin & R Downie; The Acupuncture Institute, Ontario Canada; J. Wiley & Sons

 

A study of the Effects or Lasering of Cjronic Bowed Tendons, Wheatley, LS Mckibbin DVM, and DM Paraschak Bsc MA; Lasers in Surg & Medicine, Vol. pp. 55-59 (1983) Scc 3

 

Lasers and Wound Healing, Albert J. Nemeth, MD; Laser and Dermatology Center, Clearwater FL, Dermatologic Clinics, Vol. 11 #4, 1993

 

Low Level Laser Therapy: A Practical Introduction, T. Ohshiro & RG Caiderhead, Wiley and Sons

 

Low Reactive- Level Laser Therapy: A Practical Application, T. Ohshiro; Book: Wiley and Sons

 

Laser Biostimulation of Healing Wounds: Specific Effects and Mechanisms of Action, Chukuka S Enwemeka, PhD; Assistant Professor of Physical Therapy – U. of Texas, Jealth Science Center, San Antonio, TX; The Journal of Orthopaedic & Sports Physical Therapy, Vol. 9. No. 10, 1099

 

Effect of Helium-Neon and Infrared Laser Irradiation on Wound Healing in Rabbits, B Braverman, PhD; R McCarthy. Pharmd, A Lyankovich, MD; D Forde, BS, M Overfield, BS and M Bapna, PhD; Rush – Presbyterian – St. Luke’s Medical Enter; University of Illinois, Lasers in Surgery and Medicine 9:50-58(1989)

 

Bone Fracture Consolidates Faster With Low-Power Laser, MA Trelles, MD and E Mayayo, MD, Barcelona, Spain; Lasers in Surgery & Med. 7:36-45(1987)

 

Wound Management with Whirlpool and Infrared Cold Laser Treatment, P Gogia; B Hurt and T Zim; AMI-Park Plaza Hospital, Houston TX, Physical Therapy, Vol. 68, No. 8, August 1988

 

Effects of Low-Level Energy Lasers on the Healing of Full-Thickness Skin Defects, J Surinchak. MA; M Alago, BS, R Bellamy, MD; B Stuck, MS and M Belkin, MD; Letennan Army Institute of Research. Presido of San Fransico, CA; Lasers in Surgery & Medicine, 2:267-274(1983)

 

Biostimulatin of Wound Healing by Lasers: Experimental Approaches in Animal Models and in Fibroblast Cultures, RP Abergel, MD; R Lyons. MD; J Castel, MS, R Dwyer. MD and i Uitlo. MD, PhD; Harbor UCLA Medical Cneter. CA: J Dennatol. Surgery Oncol., 13:2 Feb. 1987

 

Effects of Low Energy Laser n Wound Healing In a Porcine Model, J Hunter, MD; L Leonard, MD; R Wilsom MD; G Snider, MD and J DLxon, MD; Department of Surgery, University of Utah Medical Center, Salt Lake City UT, Lasers in Surgery & Med. 3:285-290, 84

 

Effect of Laser Rays on Wound Healing, E Mester, MD; T Spiry, MD; B Szende. MD and J Tola; Semmelweis Medical Univ. Budapes, The American Journal of Surgery. Vol 122, Oct 1971

 

Low Level Laser Therapy in the United Kingdom, Kevin C Moore, MD; The Royal Oldham Hospital, Oldhant, UK

 

Effects of Skin-Contact Monochromatic Infrared Irradiation on Tendonitis, Capsulitis and Myofascial Pain, T.L Thomassoi DDS, 19th Annual Scientific Meetin, American Academy of Neurological & Orthopaedic Surgeons, Aug. 27-30, 1995 Facial Pain/TMJ Centre, Denver, CO