Light is electromagnetic radiation with a wavelength that is visible to the eye, or in a more general sense, any electromagnetic radiation in the range from infrared to ultraviolet. The three basic dimensions of light (and of all electromagnetic radiation) are:

Due to wave-particle duality, light simultaneously exhibits properties of both waves and particles. The precise nature of light is one of the key questions of modern physics.

Visible electromagnetic radiation

Light is the visible portion of the electromagnetic spectrum, between the frequencies of 7.5×1014 hertz (abbreviated 'Hz') and 3.8×1014 Hz. Since the speed (v), frequency (f or ν), and wavelength (λ) of a wave obey the relation:

v = f~\lambda \,\!

Because the speed of light in a vacuum is fixed, visible light can also be characterised by its wavelength of between 400 nanometres (abbreviated 'nm') and 800 nm (in a vacuum).

Light excites the rod cells and cone cells in the retina of the human eye, creating electrical nerve impulses that travel up the optic nerve to the brain, producing vision.

Speed of light

Main article: Speed of light

Although some people speak of the "velocity of light", the word velocity should be reserved for vector quantities, that is, those with both magnitude and direction. The speed of light is a scalar quantity, having only magnitude and no direction, and therefore speed is the correct term.

The speed of light has been measured many times, by many physicists. The best early measurement is Ole Rømer's (a Danish physicist), in 1676. By observing the motions of Jupiter and one of its moons, Io, with a telescope, and noting discrepancies in the apparent period of Io's orbit, Rømer calculated a speed of 227,000 kilometres per second (approximately 141,050 miles per second).

The first successful measurement of the speed of light using an earthbound apparatus was carried out by Hippolyte Fizeau in 1849. Fizeau directed a beam of light at a mirror several thousand metres away, and placed a rotating cog wheel in the path of the beam from the source to the mirror and back again. At a certain rate of rotation, the beam could pass through one gap in the wheel on the way out and the next gap on the way back. Knowing the distance to the mirror, the number of teeth on the wheel, and the rate of rotation, Fizeau measured the speed of light as 313,000 kilometres per second.

Albert A. Michelson improved on Rømer's work in 1926 used rotating mirrors to measure the time it took light to make a round trip from Mt. Wilson to Mt. San Antonio in California. The precise measurements yielded a speed of 186,285 miles/second (299,796 kilometres/second). In daily use, the figures are rounded off to 300,000 km/s and 186,000 miles/s.


Main article: Refraction

All light propagates at a finite speed. Even moving observers always measure the same value of c, the speed of light in vacuum, as c = 299,792,458 metres per second (186,282.397 miles per second). When light passes through a transparent substance, such as air, water or glass, its speed is reduced, and it suffers refraction. The reduction of the speed of light in a denser material can be indicated by the refractive index, n, which is defined as:

n = \frac{c}{v} \;\!

Thus, n=1 in a vacuum and n>1 in matter.

When a beam of light enters a medium from vacuum or another medium, it keeps the same frequency and changes its wavelength. If the incident beam is not orthogonal to the edge between the media, the direction of the beam will change. Refraction of light by lenses is used to focus light in magnifying glasses, spectacles and contact lenses, microscopes and refracting telescopes.


Main article: Optics

The study of light and the interaction of light and matter is termed optics. The observation and study of optical phenomena such as rainbows offers many clues as to the nature of light as well as much enjoyment.

Color and wavelengths

The different wavelengths are detected by the human eye and then interpreted by the human brain as colors, ranging from red at the longest wavelengths (lowest frequencies) to violet at the shortest wavelengths (highest frequencies). The intervening frequencies are seen as orange, yellow, green, blue, and, conventionally, indigo.


The wavelengths of the electromagnetic spectrum immediately outside the range that the human eye is able to perceive are called ultraviolet (UV) at the short wavelength (high frequency) end and infrared (IR) at the long wavelength (low frequency) end. Although humans cannot see IR, we do perceive the near IR (shorter wavelength, higher frequency, higher energy) as heat through receptors in the skin. Cameras that can detect IR and convert it to light are called, depending on their application, night-vision cameras or infrared cameras (not to be confused with an image intensifier that only amplifies available visible light).

UV radiation is not directly perceived by humans at all except in a very delayed fashion, as overexposure of the skin to UV light can cause sunburn, or skin cancer, and underexposure can cause depression due to vitamin D deficiency. However, because UV is a higher frequency radiation than visible light, it very easily can cause materials to fluoresce visible light.

Some animals, such as bees, can see UV radiation while others, such as pit viper snakes, can see IR using pits in their heads.

Measurement of light

The following quantities and units are used to measure light.

Light can also be characterised by:

SI light units

Light sources

There are many sources of light. A body at a given temperature will emit a characteristic spectrum of black body radiation. Examples include sunlight (the radiation emitted by the chromosphere of the Sun at around 6,000 K peaks in the visible region of the electromagnetic spectrum), incandescent light bulbs (which are generally very inefficient, emitting only around 10% of their energy as light and the remainder as "heat", i.e. infrared) and glowing solid particles in flames (see fire, red hot , white hot ).

Atoms emit and absorb light at characteristic energies. Emission lines can either be stimulated, such as visible lasers and microwave maser emission, light-emitting diodes, gas discharge lamps (such as neon lamps and neon signs, mercury-vapor lamps, etc), and flames (light from the hot gas itself - so, for example, sodium in a gas flame emits characteristic yellow light) or spontaneous.

Acceleration of a free charged particle, such as an electron, can produce visible radiation: Cyclotron radiation, Synchrotron radiation, and Bremsstrahlung radiation. Particles moving through a medium faster than the speed of light in that medium can produce visible Cherenkov radiation.

Certain chemicals produce visible radiation by chemoluminescence. For example, fireflies produce chemicals that produce light by these mechanisms, and boats moving through water can disturb phosphorescent plankton.

Certain substances produce light when they are illuminated by more energetic radiation, a process known as fluorescence. This is used in strip lights .

Particles striking certain chemicals can produce light by phosphorescence, for example, cathodoluminescence. This mechanism is used in oscilloscopes and televisions, and cathode ray tube.

Certain other mechanisms can produce light:

Theories about light

Early Greek ideas

In 55 BC Lucretius, continuing the ideas of earlier atomists, wrote that light and heat from the Sun were composed of minute particles.

Ptolemy also wrote about the refraction of light.

10th century optical theory

The scientist Abu Ali al-Hasan ibn al-Haytham (965-c.1040), also known as Alhazen, developed a broad theory that explained vision, using geometry and anatomy, which stated that each point on an illuminated area or object radiates light rays in every direction, but that only one ray from each point, which strikes the eye perpendicularly, can be seen. The other rays strike at different angles and are not seen. He used the example of the pinhole camera, which produces an inverted image, to support his argument. Alhazen held light rays to be streams of minute particles that travelled at a finite speed. He improved Ptolemy's theory of the refraction of light. Alhazen's work did not become known in Europe until the late 16th century.

The 'plenum'

René Descartes (1596-1650) held that light was a disturbance of the plenum, the continuous substance of which the universe was composed. In 1637 he published a theory of the refraction of light which wrongly assumed that light travelled faster in a denser medium, by analogy with the behaviour of sound waves. Descartes' theory is often regarded as the forerunner of the wave theory of light.

Particle theory

Pierre Gassendi (1592-1655), an atomist, proposed a particle theory of light which was published posthumously in the 1660s. Isaac Newton studied Gassendi's work at an early age, and preferred his view to Descartes' theory of the plenum. He stated in his Hypothesis of Light of 1675 that light was composed of corpuscles (particles of matter) which were emitted in all directions from a source. One of Newton's arguments against the wave nature of light was that waves were known to bend around obstacles, while light travelled only in straight lines. He did, however, explain the phenomenon of the diffraction of light (which had been observed by Francesco Grimaldi) by allowing that a light particle could create a localised wave in the aether.

Newton's theory could be used to predict the reflection of light, but could only explain refraction by incorrectly assuming that light accelerated upon entering a denser medium because the gravitational pull was greater. Newton published the final version of his theory in his Opticks of 1704. His reputation helped the particle theory of light to dominate physics during the 18th century.

Wave theory

In the 1660s, Robert Hooke published a wave theory of light. Christian Huygens worked out his own wave theory of light in 1678, and published it in his Treatise on light in 1690. He proposed that light was emitted in all directions as a series of waves in a medium called the aether. As waves are not affected by gravity, it was assumed that they slowed down upon entering a denser medium.

The wave theory predicted that light waves could interfere with each other like sound waves (as noted in the 18th century by Thomas Young), and that light could be polarized. Young showed by means of a diffraction experiment that light behaved as waves. He also proposed that different colours were caused by different wavelengths of light, and explained colour vision in terms of three-coloured receptors in the eye.

Another supporter of the wave theory was Euler. He argued in Nova theoria lucis et colorum (1746) that diffraction could more easily be explained by a wave theory.

Later, Fresnel independently worked out his own wave theory of light, and presented it to the Académie des Sciences in 1817. Poisson added to Fresnel's mathematical work to produce a convincing argument in favour of the wave theory, helping to overturn Newton's corpuscular theory.

The weakness of the wave theory was that light waves, like sound waves, would need a medium for transmission. A hypothetical substance called the luminiferous aether was proposed, but its existence was cast into strong doubt by the Michelson-Morley experiment.

Newton's corpuscular theory implied that light would travel faster in a denser medium, while the wave theory of Huygens and others implied the opposite. At that time, the speed of light could not be measured accurately enough to decide which theory was correct. The first to make a sufficiently accurate measurement was Léon Foucault, in 1850. His result supported the wave theory, and the classical particle theory was finally abandoned.

Electromagnetic theory

In 1845, Faraday discovered that the angle of polarisation of a beam of light as it passed through a polarising material could be altered by a magnetic field, an effect now known as Faraday rotation. This was the first evidence that light was related to electromagnetism. Faraday proposed in 1847 that light was a high-frequency electromagnetic vibration, which could propagate even in the absence of a medium such as the aether.

Faraday's work inspired James Clerk Maxwell to study electromagnetic radiation and light. Maxwell discovered that self-propagating electromagnetic waves would travel through space at a constant speed, which happened to be equal to the previously measured speed of light. From this, Maxwell concluded that light was a form of electromagnetic radiation: he first stated this result in 1862 in On Physical Lines of Force. In 1873, he published A Treatise on Electricity and Magnetism, which contained a full mathematical description of the behaviour of electric and magnetic fields, still known as Maxwell's equations. The technology of radio transmission was, and still is, based on this theory.

The constant speed of light predicted by Maxwell's equations contradicted the mechanical laws of motion that had been unchallenged since the time of Galileo, which stated that all speeds were relative to the speed of the observer. A solution to this contradiction would later be found by Albert Einstein.

Particle theory revisited

The wave theory was accepted until the late 19th century, when Einstein described the photoelectric effect, by which light striking a surface caused electrons to change their momentum, which indicated a particle-like nature of light. This clearly contradicted the wave theory, and for years physicists tried to rectify this contradiction without success.

Quantum theory

In 1900, Max Planck described quantum theory, in which light is considered to be as a particle that could exist in discrete amounts of energy only. These packets were called quanta, and the particle of light was given the name photon, to correspond with other particles being described around this time, such as the electron and proton. A photon has an energy, E, proportional to its frequency, f, by

E_f = hf = \frac{hc}{\lambda} \,\!

where h is planck's constant, λ is the wavelenght and c is the speed of light.

As it originally stood, this theory did not explain the simultaneous wave-like nature of light, though Planck would later work on theories that did. The Nobel Committee awarded Planck the Physics Prize in 1918 for his part in the founding of quantum theory.

Wave-particle duality

The modern theory that explains the nature of light is wave-particle duality, described by Albert Einstein in the early 1900s, based on his work on the photoelectric effect and Planck's results. Einstein determined that the energy of a photon is proportional to its frequency. More generally, the theory states that everything has both a particle nature, and a wave nature, and various experiments can be done to bring out one or the other. The particle nature is more easily discerned if an object has a large mass, so it took until an experiment by Louis de Broglie in 1924 to realise that electrons also exhibited wave-particle duality. Einstein received the Nobel Prize in 1921 for his work with the wave-particle duality on photons, and de Broglie followed in 1929 for his extension to other particles.

A light wave


This is a light wave frozen in time and shows the two components of light; an electric field and a magnetic field that oscillate perpendicular to each other and to the direction of motion (a transverse wave).

The electric and magnetic fields are perpendicular to the direction of travel and to each other. This picture depicts a very special case, linearly polarized light. See Polarization for a description of the general case and an explanation of linear polarization.

While the above statements about the relations of the electric and magnetic fields are always true, the subtle difference in the general case is that the direction and amplitude of the magnetic (or electric) field can vary, in one place, with time, or, in one instant, can vary along the direction of propagation.


Types of diodes


Types of diodes

A diode functions as the electronic version of a one-way valve. By restricting the direction of movement of charge carriers, it allows an electric current to flow in one direction, but blocks it in the opposite direction.

Contents [showhide]

1 Applications

1.1 Radio demodulation
1.2 Logic gates
1.3 Power conversion
1.4 Over-Voltage Protection

2 Diode technology

3 Analysis

4 Diode types

5 Related devices


Radio demodulation

The first use for the diode was the demodulation of amplitude modulated (AM) radio broadcasts. The history of this discovery is treated in depth in the radio article. In summary, an AM signal consists of alternating positive and negative peaks of current, whose amplitude or 'envelope' is proportional to the original audio signal, but whose average value is zero. The diode rectifies the AM signal (i.e. it eliminates the negative peaks), leaving a signal whose average amplitude is the desired audio signal. The average value is extracted using a simple filter and fed into a transducer (originally a crystal earpiece , now more likely to be a loudspeaker), which generates sound.

Logic gates

Diodes can be used to construct logic gates: and and or.

Power conversion

A diode is called a half wave rectifier when it is used to convert alternating current electricity into direct current, by removing the negative portion of the current.

A special arrangement of four diodes that will transform an alternating current into a direct current, using both positive and negative excursions of a single phase alternating current, is known as a diode bridge, single-phase bridge rectifier, or simply a full wave rectifier.

With a split (center-tapped) alternating current supply it is possible to obtain full wave rectification with only two diodes. Often diodes come in pairs, as double diodes in the same housing.

When it is desired to rectify three phase power, one could rectify each of the three phases with the arrangement of four diodes used in single phase, which would require a total of 12 diodes. However, due to redundancy, only six diodes are needed to make a three phase full wave rectifier. Most devices that generate alternating current (such devices are called alternators) generate three phase alternating current.

Disassembled automobile alternator, showing the six diodes that comprise a full-wave three phase bridge rectifier.


Disassembled automobile alternator, showing the six diodes that comprise a full-wave three phase bridge rectifier.

For example, an automobile alternator has six diodes inside it to function as a full wave rectifier for battery charge applications. Many of the small wind turbines, such as the Lakota from True North Power (example installation) use three double diodes bolted to the same heatsink.

Three-Phase Bridge Rectifier for wind turbine.


Three-Phase Bridge Rectifier for wind turbine.

Over-Voltage Protection

Diodes are frequently used to conduct dangerously high voltages away from sensitive devices, most commonly by being reverse-biased (non-conducting) under normal circumstances, and becoming forward-biased (conducting) when the voltage rises above its normal value. For example, diodes are used in stepper motor and relay circuits to de-energize coils rapidly without the damaging voltage spikes that would otherwise occur. Many integrated circuits also incorporate diodes on the connection pins to prevent external voltages from damaging their sensitive transistors. Specialized diodes are used to protect from over-voltages at higher power (see Types below).

Diode technology

The first diodes were vacuum tube devices (also known as thermionic valves), arrangements of electrodes surrounded by a vacuum within a glass envelope, similar in appearance to incandescent light bulbs. The arrangement of a filament and plate as a diode was invented in 1904 by John Ambrose Fleming, scientific adviser to the Marconi company, based on an observation by Thomas Edison. Like light bulbs, vacuum tube diodes have a filament through which current is passed, heating the filament. In its heated state it can now emit electrons into the vacuum. These electrons are electrostatically drawn to a positively charged outer metal plate called the anode, or just the "plate". Electrons do not flow from the plate back toward the filament, even if the charge on the plate is made negative, because the plate is not heated.

Although vacuum tube diodes are still used for a few specialized applications, most modern diodes are based on semiconductor p-n junctions. In a p-n diode, conventional current can flow from the p-doped side (the anode) to the n-doped side (the cathode), but not in the opposite direction. When the diode is reverse-biased, the charge carriers are pulled away from the center of the device, creating a depletion region.


A semiconductor diode's current-voltage, or I-V, characteristic curve is ascribed to the behavior of the so-called Depletion Layer or Depletion Zone which exists at the p-n junction between the differing semiconductors. When a semiconducting junction is first created, electrons from the N-doped region diffuse across into the P-doped region where they "recombine," falling into holes. Recombined electrons and holes are immobile, and any region lacking mobile charge carriers behaves as an insulator. The Depletion width doesn't grow without limits. For each hole-electron pair which cancels out, a positively-charged dopant atom (ion) is left behind in the P-doped region, and a negative ion is left behind in the N-doped region. The entire carrier populations of the opposite-doped semiconductors do not recombine, since a significant e-field appears between the populations of opposite-charged ions which remain behind. This permanent e-field has a polarity which pushes the two kinds of charge carriers back into their respective doped regions. However, an externally applied voltage can defeat this e-field, shrinking the Depletion Layer until carriers are easily able to tunnel across the insulating gap, and so the diode "turns on."

A diode's I-V, characteristic can be approximated by two regions of operation. Below a certain difference in potential between the two leads, the Depletion Layer has significant width, and the diode can be thought of as an open (non-conductive) circuit. As the potential difference is increased, at some stage the diode will become conductive and allow charges to flow, at which point it can be thought of as a connection with zero (or at least very low) resistance. More precisely, the transfer function is logarithmic, but so sharp that it looks like a corner (see also signal processing).

The Shockley ideal diode equation (named after William Bradford Shockley) can be used to approximate the p-n diode's I-V characteristic.

I=I_S \left( {e^{qV_D \over nkT}-1} \right)\,,

where I is the diode current, IS is a scale factor called the saturation current, q is the charge on an electron (the elementary charge), k is Boltzmann's constant, T is the absolute temperature of the p-n junction and VD is the voltage across the diode. The term kT/q is the thermal voltage, sometimes written VT, and is approximately 26 mV at room temperature. n (sometimes omitted) is the emission coefficient, which varies from about 1 to 2 depending on the fabrication process.

In a normal silicon diode, the drop in potential across a conducting diode is approximately 0.6 to 0.7 volts. The value is different for other diode types - Schottky diodes can be as low as 0.2V and light-emitting diodes (LEDs) can be 1.4V or more.

The voltage drop across an ordinary silicon diode can be used as a simple voltage regulator: a load (such as an incandescent lamp or an electric motor) in series with one or more diodes absorbs the voltage in excess of the "diode drop," while a second, smaller load (usually a small incandescent lamp), in parallel with the diode(s), receives only the combined voltage drop of the diodes. This allows for a lamp to be illuminated at roughly constant brightness on the same power supply as (for example) a variable speed motor, and can also be used to protect small, delicate incandescent lamps placed in series strings from excess current or voltage. For a 1.5V lamp, two diodes in series provide adequate voltage; for AC or bidirectional DC, a second pair in reverse parallel is added. This technique is commonly used for lighting model railroad locomotive headlights (using the locomotive's motor as the "ballast" load), and passenger car lighting (using a concealed 16V lamp as the "ballast" load, as ordinary resistors do not work well for this purpose).

Diode types

There are several types of semiconductor junction diodes:

  • Normal (p-n) diodes: which operate as described above. Usually made of doped silicon or, more rarely, germanium. Before the development of modern silicon power rectifier diodes, cuprous oxide and later selenium was used; its low efficiency gave it a much higher forward voltage drop (typically 1.4-1.7V per "cell," with multiple cells stacked to increase the peak inverse voltage rating in high voltage rectifiers), and required a large heat sink (often an extension of the diode's metal substrate), much larger than a silicon diode of the same current ratings would require.
  • 'Gold doped' diodes: The gold causes 'minority carrier suppression.' This lowers the effective capacitance of the diode, allowing it to operate at signal frequencies. A typical example is the 1N914. Germanium and Schottky diodes are also fast like this, as are bipolar transistors 'degenerated' to act as diodes. Power supply diodes are made with the expectation of working at a maximum of 2.5 x 400 Hz (sometimes called 'French power' by Americans), and so are not useful above a kilohertz.
  • Zener diodes (pronounced ): diodes that can be made to conduct backwards. This effect, called Zener Breakdown, occurs at a precisely defined voltage, allowing the diode to be used as a precision voltage reference. Some devices labelled as high-voltage Zener diodes are actually avalanche diodes (see below). Two (equivalent) Zeners in series and in reverse order, in the same package, constitute a transient absorber (or Transorb , a registered trademark). They are named for Dr. Clarence Melvin Zener of Southern Illinois University, inventor of the device.
  • Avalanche diodes: diodes that conduct in the reverse direction when the reverse bias voltage exceeds the breakdown voltage. These are electrically very similar to Zener diodes, and are often mistakenly called Zener diodes, but break down by a different mechanism, the Avalanche Effect. This occurs when the reverse electric field across the p-n junction causes a wave of ionization, reminiscent of an avalanche, leading to a large current. Avalanche diodes are designed to break down at a well-defined reverse voltage without being destroyed. The difference between the avalanche diode (which has a reverse breakdown above about 6.2 V) and the Zener is that the channel length of the former exceeds the 'mean free path' of the electrons, so there are collisions between them on the way out. The only practical difference is that the two types have temperature coefficients of opposite polarities. Practical voltage reference circuits feature Zener and switching diodes connected in series and opposite directions to balance the temperature coefficient to near zero.
    • Transient voltage suppression (TVS) diodes. These are avalanche diodes designed specifically to protect other semiconductor devices from electrostatic discharges. Their p-n junctions have a much larger cross-sectional area than those of a normal diode, allowing them to conduct large currents to ground without sustaining damage.
  • Light-emitting diodes (LEDs): as the electrons cross the junction they emit photons. In most diodes, these are reabsorbed, and are at frequencies that can not be seen (usually infrared). However, with the right materials and geometry, the light becomes visible. The forward potential of these diodes define their color. Thus different materials (extrinsic semiconductors) must be used. 1.2 V corresponds to red, 2.4 to violet. Now, even soft UV diodes are available. The first LED's were red and yellow, and higher-frequency diodes have been developed over time. Polishing the device with parallel faces, so as to form a resonant cavity, yields a 'laser diode.' All LEDs are monochromatic; 'white' LED's are actually combinations of three LED's of a different color, or a blue LED with a yellow scintillator coating. The lower the frequency of emission, the greater the efficiency. So to normalize output when using LED's of different colors, increase current in the higher frequency models. This effect is complicated, somewhat, by the fact that the human eye is most sensitive in the blue-green.
  • Photodiodes: these have wide, transparent junctions. Photons can push electrons over the junction, causing a current to flow. Photo diodes can be used as solar cells. And in photometry. If a photon doesn't have enough energy, it isn't going to turn the photo-diode on very much. LED's can be used as low-efficiency photodiodes in signal applications. Sometimes a LED is paired with a photodiode or phototransistor in the same package. This device is called an "opto isolator." Unlike a transformer, this scheme allows for DC coupling. These are used to protect hospital patients from shock. Patients with IV's in their bodies are particularly susceptible, sometimes succumbing to 'carpet shock.' They are also used to isolate low-current control or signal circuitry from "dirty" power supply circuits or higher-current motor and machine circuits.
  • Schottky diodes: these have a very low forward voltage drop, usually 0.15 to 0.45 V, which makes them useful in battery-powered and low-voltage circuits. Also in mixer circuits for RF.
  • Snap diodes: these can provide very fast voltage transitions.
  • Esaki or tunnel diodes: these have a region of operation showing negative resistance caused by quantum tunneling, thus allowing amplification of signals and very simple bistable circuits.
  • Gunn diodes: these are similar to tunnel diodes in that they are made of materials such as GaAs or InP that exhibit a region of negative differential resistance. With appropriate biasing, dipole domains form and travel across the diode, allowing high frequency microwave oscillators to be built.

There are other types of diodes, which all share the basic function of allowing electrical current to flow in only one direction, but with different methods of construction.

  • Point Contact Diode: This works the same as the junction semiconductor diodes described above, but its construction is simpler. A block of n-type semiconductor is built, and a conducting sharp-point contact made with some group-3 metal is placed in contact with the semiconductor. Some metal migrates into the semiconductor to make a small region of p-type semiconductor near the contact. The long-popular 1N34 germanium version is still used in radio receivers as a detector and occasionally in specialized analog electronics.
  • Tube or Valve Diode: This is the simplest kind of vacuum tube device (referred to as a valve in the UK). Electrons will move from a heated metal surface (cathode) treated with a mixture of barium and strontium oxides into a vacuum (thermionic emission). After leaving the cathode, they can be attracted to positively charged cool surface (anode). However, electrons are not easily released from a cold untreated surface when the voltage polarity is reversed and hence any flow is a very small current. For much of the 20th century they were used in analog signal applications, and as rectifiers in power supplies. Tube diodes were nearly obsolete by 2001, except as rectifiers in tube guitar and hi-fi amplifiers and in a few specialized high-voltage applications.
  • Gas Discharge Diode: There are two electrodes, not touching, in some kind of gas. One electrode is very sharp. The other has a smoothly curved finish. If a strong negative potential is applied to the sharp electrode, the electric field near the sharp edge or point is enough to cause an electrical discharge in the gas, free carriers are created, and a low resistance path appears. If the reverse potential is applied, the electrical field strength around the smooth electrode is not enough to start a discharge. (The discharge can only start easily at the negative end because electrons are much more mobile than positive ions.) These are sometimes used for high-voltage high-current rectification in power supply applications.
  • Varicap or varactor diodes These are used as voltage-controlled capacitors. These were important in PLL (phase-locked loop) and FLL (frequency-locked loop ) circuits, allowing tuning circuits, such as those in television receivers, to lock quickly, replacing older designs that took a long time to warm up and lock. A PLL is faster than a FLL, but prone to integer harmonic locking (if one attempts to lock to a broadband signal). They also enabled tunable oscillators in early discrete tuning of radios, where a cheap and stable, but fixed-frequency, crystal oscillator provided the reference frequency for a voltage-controlled oscillator.

Other uses for semiconductor diodes include sensing temperature, and computing analog logarithms.


A semiconductor is a material which has an electrical conductance which is between that of an insulator and a conductor.

A semiconductor behaves as an insulator at very low temperature, and has an appreciable electrical conductance at room temperature. A semiconductor can be distinguished from a conductor by the fact that, at absolute zero, the uppermost filled electron energy band is fully filled in a semiconductor, but only partially filled in a conductor. The distinction between a semiconductor and an insulator is slightly more arbitrary. A semiconductor has a band gap which is small enough such that its conduction band is appreciably thermally populated with electrons at room temperature, whilst an insulator has a band gap which is too wide for there to be appreciable thermal electrons in its conduction band at room temperature.

Fundamental semiconductor physics

Band structure of a semiconductor

Band structure of a semiconductor showing a full valence band and an empty conduction band. The Fermi level lies within the forbidden bandgap


Band structure of a semiconductor showing a full valence band and an empty conduction band. The Fermi level lies within the forbidden bandgap

In the parlance of solid-state physics, semiconductors (and insulators) are defined as solids in which at absolute zero (0 K), the uppermost band of occupied electron energy states, known as the valence band, is completely full. Or, to put it another way, the Fermi energy of the electrons lies within the forbidden bandgap. The Fermi energy, or Fermi level can be thought of as the energy up to which available electron states are occupied at absoloute zero.

At room temperature, there is some smearing of the energy distribution of the electrons, such that a small, but not insignificant number have enough energy to cross the energy band gap into the conduction band. These electrons which have enough energy to be in the conduction band have broken free of the covalent bonds between neighbouring atoms in the solid, and are free to move around, and hence conduct charge. The covalent bonds from which these excited electrons have come now have missing electrons, or holes which are free to move around as well. (The holes themselves don't actually move, but a neighbouring electron can move to fill the hole, leaving a hole at the place it has just come from, and in this way the holes appear to move.)

It is an important distinction between conductors and semiconductors that, in semiconductors, movement of charge (current) is facilitated by both electrons and holes. Contrast this to a conductor where the Fermi level lies within the conduction band, such that the band is only half filled with electrons. In this case, only a small amount of energy is needed for the electrons to find other unoccupied states to move into, and hence for current to flow.

The ease with which electrons in a semiconductor can be excited from the valence band to the conduction band depends on the band gap between the bands, and it is the size of this energy bandgap that serves as an arbitrary dividing line between semiconductors and insulators. Materials with a bandgap energy of less than about 3 electron volts are generally considered semiconductors, while those with a greater bandgap energy are considered insulators..

The current-carrying electrons in the conduction band are known as "free electrons," although they are often simply called "electrons" if context allows this usage to be clear. The holes in the valence band behave very much like positively-charged counterparts of electrons, and they are usually treated as if they are real charged particles.

Doping of semiconductors

One of the main reasons that semiconductors are useful in electronics is that their electronic properties can be greatly altered in a controllable way by adding small amounts of impurities. These impurities are called called dopants.

Heavily doping a semiconductor can increase its conductivity by a factor greater than a billion. In modern integrated circuits, for instance, heavily-doped polycrystalline silicon is often used as a replacement for metals.

Intrinsic and extrinsic semiconductors

An intrinsic semiconductor is one which is pure enough that impurities do not appreciably affect its electrical behavior. In this case, all carriers are created by thermally or optically exciting electrons from the full valence band into the empty conduction band. Thus equal numbers of electrons and holes are present in an intrinsic semiconductor. Electrons and holes flow in opposite directions in an electric field, though they contribute to current in the same direction since they are oppositely charged. Hole current and electron current are not necessarily equal in an intrinsic semiconductor, however, because electrons and holes have different effective masses (crystalline analogues to free inertial masses).

The concentration of carriers is strongly dependent on the temperature. At low temperatures, the valence band is completely full, making the material an insulator (see electrical conduction for more information). Increasing the temperature leads to an increase in the number of carriers and a corresponding increase in conductivity. This principle is used in thermistors. This behavior contrasts sharply with that of most metals, which tend to become less conductive at higher temperatures due to increased phonon scattering.

An extrinsic semiconductor is one that has been doped with impurities to modify the number and type of free charge carriers.

N-type doping

The purpose of n-type doping is to produce an abundance of mobile or "carrier" electrons in the material. To help understand how n-type doping is accomplished, consider the case of silicon (Si). Si atoms have four valence electrons, each of which is covalently bonded with one of four adjacent Si atoms. If an atom with five valence electrons, such as those from group VA of the periodic table (eg. phosphorus (P), arsenic (As), or antimony (Sb)), is incorporated into the crystal lattice in place of a Si atom, then that atom will have four covalent bonds and one unbonded electron. This extra electron is only weakly bound to the atom and can easily be excited into the conduction band. At normal temperatures, virtually all such electrons are excited into the conduction band. Since excitation of these electrons does not result in the formation of a hole, the number of electrons in such a material far exceeds the number of holes. In this case the electrons are the majority carriers and the holes are the minority carriers. Because the five-electron atoms have an extra electron to "donate", they are called donor atoms. Note that each movable electron within the semiconductor is never far from an immobile positive dopant ion, and the n-doped material normally has a net electric charge of zero.

P-type doping

The purpose of p-type doping is to create an abundance of holes. In the case of silicon, a trivalent atom (such as boron) is substituted into the crystal lattice. The result is that one electron is missing from one of the four covalent bonds normal for the silicon lattice. Thus the dopant atom can accept an electron from a neighboring atoms' covalent bond to complete the fourth bond. Such dopants are called acceptors. The dopant atom accepts an electron, causing the loss of one bond from the neighboring atom and resulting in the formation of a "hole." Each hole is associated with a nearby negative-charged dopant ion, and the semiconductor remains electrically neutral as a whole. However, once each hole has wandered away into the lattice, one proton in the atom at the hole's location will be "exposed" and no longer cancelled by an electron. For this reason a hole behaves as a quantity of positive charge. When a sufficiently large number of acceptor atoms are added, the holes greatly outnumber the thermally-excited electrons. Thus, the holes are the majority carriers, while electrons are the minority carriers in p-type materials. Blue diamonds (Type IIb), which contain boron (B) impurities, are an example of a naturally occurring p-type semiconductor.

P-n junctions

A p-n junction may be created by doping adjacent regions of a semiconductor with p-type and n-type dopants. If a positive bias voltage is placed on the p-type side, the dominant positive carriers (holes) are pushed toward the junction. At the same time, the dominant negative carriers (electrons) in the n-type material are attracted toward the junction. Since there is an abundance of carriers at the junction, the junction behaves as a conductor, and the voltage placed across the junction produces a current. As the clouds of holes and electrons are forced to overlap, electrons fall into holes and become part of the population of immobile covalent bonds. However, if the bias polarity is reversed, the holes and electrons are pulled away from the junction. Since only very few new electron/hole pairs are created at the junction, the existing mobile carriers are swept away to leave a Depletion Zone; a region of relatively non-conducting silicon. The reversed bias voltage will produce only a very low current across the junction. The p-n junction is the basis of an electronic device called a diode, which allows electric charges to flow in only one direction. Similarly, a third semiconductor region can be doped n-type or p-type to form a three-terminal device, such as the bipolar junction transistor (which can be either p-n-p or n-p-n).

Purity and perfection of semiconductor materials

Semiconductors with predictable, reliable electronic properties are difficult to mass-produce because of the required chemical purity, and the perfection of the crystal structure, which are needed to make devices. Because the presence of impurities in very small proportions can have such big effects on the properties of the material, the level of chemical purity needed is extremely high. Techniques for achieving such high purity include zone refining, in which part of a solid crystal is melted. Impurities tend to concentrate in the melted region, leaving the solid material more pure. A high degree of crystalline perfection is also required, since faults in crystal structure such as dislocations, twins, and stacking faults, create energy levels in the band gap, interfering with the electronic properties of the material. Faults like these are a major cause of defective devices in production processes. The larger the crystal, the harder it is to achieve the necessary purity and perfection; current mass production processes use six-inch diameter crystals which are grown as cylinders and sliced into wafers.

Coherence (physics)


Coherence is a property of waves that measures the ability of the waves to interfere with each other. Two waves that are coherent can be combined to produce an unmoving distribution of constructive and destructive interference (a visible interference pattern) depending on the relative phase of the waves at their meeting point. Waves that are incoherent, when combined, produce rapidly moving areas of constructive and destructive interference and therefore do not produce a visible interference pattern.

A wave can also be coherent with itself, a property known as temporal coherence. If a wave is combined with a delayed copy of itself (as in a Michelson interferometer), the duration of the delay over which it produces visible interference is known as the coherence time of the wave, Δtc. From this, a corresponding coherence length can be calculated:

\Delta x_c = c \Delta t_c \,\!


c is the speed of the wave.

The temporal coherence of a wave is related to the spectral bandwidth of the source. A truly monochromatic (single frequency) wave would have an infinite coherence time and length. In practice, no wave is truly monochromatic (since this requires a wavetrain of infinite duration), but in general, the coherence time of the source is inversely proportional to its bandwidth.

Waves also have the related property of spatial coherence; this is the ability of any one spatial position of the wavefront to interfere with any other spatial position. Young's double-slit experiment relies on spatial coherence of the beam illuminating the two slits; if the beam was spatially incoherent, i.e. if the sunlight was not first passed through a single slit, then no interference pattern would be seen.

Spatial coherence is high for sphere waves and plane waves, and therefore is related to the size of the light source. A point source of zero diameter emits spatially coherent light, while the light from a collection of point-sources (or from a source of finite diameter) would have lower coherence. Spatial coherence can be increased with a spatial filter; a very small pinhole preceded by a condenser lens. The spatial coherence of light will increase as it travels away from the source and becomes more like a sphere or plane wave. Light from distant stars, though far from monochromatic, has extremely high spatial coherence. The science of stellar interferometry relies on the coherence of starlight.

Light waves produced by a laser often have high temporal and spatial coherence (though the degree of coherence depends strongly on the exact properties of the laser). For example, a stabilised helium-neon laser can produce light with coherence lengths in excess of 5 m. Light from common sources (such as light bulbs) is not monochromatic and has a very short coherence length (~1 μm), and can be considered totally temporally incoherent for most purposes. Spatial coherence of laser beams also manifests itself as speckle patterns and diffraction fringes seen at the edges of shadow.

Holography requires temporally and spatially coherent light. Its inventor, Dennis Gabor, produced successful holograms more than ten years before lasers were invented. To produce coherent light he passed the monochromatic light from an emission line of a mercury-vapor lamp through a pinhole.


(Redirected from Monochromatic)

Something which is monochromatic has a single colour. In physics, the word is used more generally to refer to electromagnetic radiation of a single wavelength.

For an image, the term monochrome is essentially the same as black-and-white, but the monochrome may be preferred to indicate that combinations such as green-and-white, green-and-black, etc., are not excluded.

In computing, monochrome has two meanings: it can mean having only one colour which is either on or off, or also allowing shades of that colour, although the latter is more correctly know as greyscale. Thus it too has some ambiguity.

A monochrome computer display is capable of displaying only a single colour, often green, amber, red or white, and often also shades of that colour.

In the physical sense, no real source of electromagnetic radiation is purely monochromatic, since that would require a wave of infinite duration. Even sources such as lasers have some narrow range of wavelengths (known as the linewidth or bandwidth of the source) within which they operate.

The word monochromatic comes from the two Greek words mono (meaning "one"), and chroma (χρωμα, meaning "surface" or "the colour of the skin").


Electroluminescence is an optical phenomenon and electrical phenomenon where a material such as a natural blue diamond emits light when an electric current is passed through it.

Electroluminescence (EL) is mainly observed in semiconductors. It refers to the luminescence produced by some materials when exposed to an electric field, as opposed to heat (incandescence) or chemicals (chemoluminescence). The electric field excites electrons in the material which then emit the excess energy as photons (light).

LEDs are the most well known example of electroluminescence.


Note: Ultraviolet is also the name of a 1998 UK television miniseries about vampires.

Ultraviolet (UV) radiation is electromagnetic radiation of a wavelength shorter than that of the visible region, but longer than that of soft X-rays. It can be subdivided into near UV (380–200 nm wavelength) and extreme or vacuum UV (200–10 nm). When considering the effects of UV radiation on human health and the environment, the range of UV wavelengths is often subdivided into UVA (380–315 nm), also called Long Wave or "blacklight"; UVB (315–280 nm), also called Medium Wave; and UVC (280-10 nm), also called Short Wave or "germicidal". See 1 E-7 m for a list of objects of comparable sizes.

The name means "beyond violet" (from Latin ultra, "beyond"), violet being the color of the shortest wavelengths of visible light. Some of the UV wavelengths are colloquially called black light, as it is invisible to the human eye. Some animals, including birds, reptiles, and insects such as bees, can see into the near ultraviolet. Many fruits, flowers, and seeds stand out more strongly from the background in ultraviolet wavelengths as compared to human color vision. Many birds have patterns in their plumage that are invisible at usual wavelengths but seen in ultraviolet, and the urine of some animals is much easier to spot with ultraviolet.

The Sun emits ultraviolet radiation in the UVA, UVB, and UVC bands, but because of absorption in the atmosphere's ozone layer, 99% of the ultraviolet radiation that reaches the Earth's surface is UVA. (Some of the UVC light is responsible for the generation of the ozone.)

Ordinary glass is transparent to UVA but is opaque to shorter wavelengths. Silica or quartz glass, depending on quality, can be transparent even to vacuum UV wavelengths.

The onset of vacuum UV, 200 nm, is defined by the fact that ordinary air is opaque below this wavelength. This opacity is due to the strong absorption of light of these wavelengths by oxygen in the air. Pure nitrogen (less than about 10 ppm oxygen) is transparent to wavelengths in the range of about 150–200 nm. This has wide practical significance now that semiconductor manufacturing processes are using wavelengths shorter than 200 nm. By working in oxygen-free gas, the equipment does not have to be built to withstand the pressure differences required to work in a vacuum. Some other scientific instruments, such as circular dichroism spectrometers, are also commonly nitrogen purged and operate in this spectral region.

Contents [showhide]

1 Discovery

2 Health effects

2.1 Protection

3 Uses

3.1 Black lights
3.2 Fluorescent lamps
3.3 Pest control
3.4 Spectrophotometry
3.5 Astronomy
3.6 Analyzing minerals
3.7 Photolithography
3.8 Checking electrical insulation
3.9 Sterilization
3.10 Disinfecting drinking water
3.11 Fire detection
3.12 Curing of adhesives and coatings

4 References


Soon after infrared radiation had been discovered, the German physicist Johann Wilhelm Ritter began to look for radiation at the opposite end of the spectrum, at the short wavelengths beyond violet. In 1801 he used silver chloride, a light-sensitive chemical, to show that there was a type of invisible light beyond violet, which he called chemical rays. At that time, many scientists, including Ritter, concluded that light was composed of three separate components: an oxidising or calorific component (infrared), an illuminating component (visible light), and a reducing or hydrogenating component (ultraviolet). The unity of the different parts of the spectrum was not understood until about 1842, with the work of Macedonio Melloni, Alexandre-Edmond Becquerel and others.

Health effects


In general, UVA is the least harmful, but can contribute to the aging of skin, DNA damage and possibly skin cancer. It penetrates deeply and does not cause sunburn. Because it does not cause reddening of the skin (erythema) it cannot be measured in the SPF testing. There is no good clinical measurement of the blocking of UVA radiation, but it is important that sunscreen block both UVA and UVB.

High intensities of UVB light are hazardous to the eyes, and exposure can cause welder's flash (photokeratitis or arc eye).

UVA, UVB and UVC all can damage collagen fibers and thereby accelerate aging of the skin.

Tungsten-halogen lamps have bulbs made of quartz, not of ordinary glass. Tungsten-halogen lamps that are not filtered by an additional layer of ordinary glass are a common, useful, and possibly dangerous, source of UVB light.

UVA light is known as "dark-light" and, because of its longer wavelength, can penetrate most windows. It also penetrates deeper into the skin than UVB light and is thought to be a prime cause of wrinkles.

UVB light in particular has been linked to skin cancers such as melanoma. The radiation ionizes DNA molecules in skin cells, causing covalent bonds to form between adjacent thymine bases, producing thymidine dimers. Thymidine dimers do not base pair normally, which can cause distortion of the DNA helix, stalled replication, gaps, and misincorporation. These can lead to mutations, which can result in cancerous growths. The mutagenicity of UV radiation can be easily observed in bacteria cultures.

This cancer connection is the reason for concern about ozone depletion and the ozone hole.

UVC rays are the strongest, most dangerous type of ultraviolet light. Little attention has been given to UVC rays in the past since they are normally filtered out by the ozone layer and do not reach the Earth. Thinning of the ozone layer and holes in the ozone layer are causing increased concern about the potential for UVC light exposure, however.

A positive effect of UV light is that it induces the production of vitamin D in the skin. Grant (2002) claims tens of thousands of premature deaths occur in the US annually from cancer due to insufficient UVB exposures (apparently via vitamin D deficiency).


As a defense against UV radiation, the body tans when exposed to moderate (depending on skin type) levels of radiation by releasing the brown pigment melanin. This helps to block UV penetration and prevent damage to the vulnerable skin tissues deeper down. Suntan lotion that partly blocks UV is widely available (often referred to as "sun block" or "sunscreen"). Most of these products contain an "SPF rating" that describes the amount of protection given. This protection applies only to UVB light. In any case, most dermatologists recommend against prolonged sunbathing.

It is advisable to use protective eyewear when working with ultraviolet radiation, especially short wave ultraviolet. Ordinary eyeglasses give some protection. Most plastic lenses give more protection than glass lenses. Some plastic lens materials, such as polycarbonate, block most UV. There are protective treatments available for eyeglass lenses that need it to give better protection. The most important reason that ordinary eyeglasses only give limited protection, however, is that light can reach the eye without going through the lens. Full coverage is important if the risk from exposure is high. Full coverage eye protection is usually recommended for high altitude mountaineering, for instance. Mountaineers are exposed to higher than ordinary levels of UV radiation, both because there is less atmospheric filtering and because of reflection from snow and ice.


UV light has many various uses. Some of them are as follows:

Black lights

A black light is the name commonly given to a lamp emitting almost entirely UV radiation and very little visible light. Ultraviolet radiation itself is invisible, but illuminating certain materials with UV radiation prompts the visible effects of fluorescence and phosphorescence. Black light testing is commonly used to authenticate antiques and bank notes. The fluorescence it prompts from certain textile fibers is also used as a recreational effect (as seen for instance in the opening credits of the James Bond film A View to a Kill)

Fluorescent lamps

Fluorescent lamps produce UV radiation by the emission of low-pressure mercury gas. A phosphorescent coating on the inside of the tubes absorbs the UV and becomes visible.

The main mercury emission wavelength is in the UVC range. Unshielded exposure of the skin or eyes to mercury arc lamps that do not have a conversion phosphor is quite dangerous.

The light from a mercury lamp is predominantly at discrete wavelengths. Other practical UV sources with more continuous emission spectra include xenon arc lamps (commonly used as sunlight simulators), deuterium arc lamps, mercury-xenon arc lamps , metal-halide arc lamps, and tungsten-halogen incandescent lamps.

Pest control

Ultraviolet fly traps are used for the elimination of various small flying insects. They are attracted to the UV light and are killed or trapped once they come into contact with the device.


UV radiation is often used in visible spectrophotometry to determine the existence of fluorescence a given sample.


In astronomy, very hot objects preferentially emit UV radiation (see Wien's law). However, the same ozone layer that protects us causes difficulties for astronomers observing from the Earth, so most UV observations are made from space. (see UV astronomy, space observatory)

Analyzing minerals

Ultraviolet lamps are also used in analyzing minerals, gems, and in other detective work including authentication of various collectibles. Materials may look the same under visible light, but fluoresce to different degrees under ultraviolet light; or may fluoresce differently under short wave ultraviolet versus long wave ultraviolet. UV fluorescent dyes are used in many applications (for example, biochemistry and forensics). The fluorescent protein Green Fluorescent Protein (GFP) is often used in genetics as a marker. Many substances, proteins for instance, have significant light absorption bands in the ultraviolet that are of use and interest in biochemistry and related fields. UV-capable spectrophotometers are common in such laboratories.


Ultraviolet radiation is used for very fine resolution photolithography, a procedure where a chemical known as a photoresist is exposed to UV radiation which has passed through a mask. The light allows chemical reactions to take place in the photoresist, and after development (a step that either removes the exposed or unexposed photoresist), a geometric pattern which is determined by the mask remains on the sample. Further steps may then be taken to "etch" away parts of the sample with no photoresist remaining.

UV radiation is used extensively in the electronics industry because photolithography is used in the manufacture of semiconductors, integrated circuit components and printed circuit boards.

Checking electrical insulation

A new application of UV is to detect corona discharge (often simply called "corona") on electrical apparatus. Degradation of insulation of electrical apparatus or pollution causes corona, wherein a strong electric field ionizes the air and excites nitrogen molecules, causing the emission of ultraviolet radiation. The corona degrades the insulation level of the apparatus. Corona produces ozone and to a lesser extent nitrogen oxide which may subsequently react with water in the air to form nitrous acid and nitric acid vapour in the surrounding air. [1]


Ultraviolet lamps are used to sterilize workspaces and tools used in biology laboratories and medical facilities. Conveniently, low pressure mercury discharge lamps emit about 50% of their light at the 253.7 nm mercury emission line which coincides very well with the peak of the germicidal effectiveness curve at 265 nm. UV light at this wavelength causes adjacent thymine molecules on DNA to dimerize, if enough of these defects accumulate on a microorganism's DNA its replication is inhibited, thereby rendering it harmless. Since microorganisms can be shielded from ultraviolet light in small cracks and other shaded areas, however, these lamps are used only as a supplement to other sterilization techniques.

Disinfecting drinking water

Ultraviolet radiation is increasingly being used to disinfect drinking water and in waste water treatment plants. Recently it was discovered that ultraviolet radiation could treat Cryptosporidium, previously unknown. The findings resulted in two US patents and the use of UV radiation as a viable method to treat drinking water.

Fire detection

Ultraviolet (UV) detectors generally use either a solid-state device, such as one based on silicon carbide or aluminum nitride , or a gas-filled tube as the sensing element. UV detectors which are sensitive to UV light in any part of the spectrum respond to irradiation by sunlight and artificial light . A burning hydrogen flame, for instance, radiates strongly in the 185 to 260 nanometre) range and only very weakly in the IR region, while a coal fire emits very weakly in the UV band yet very strongly at IR wavelengths; thus a fire detector which operates using both UV and IR detectors is more reliable than one with a UV detector alone. Virtually all fires emit some radiation in the UVB band, while the Sun's radiation at this band is absorbed by the Earth's atmosphere. The result is that the UV detector is "solar blind", meaning it will not cause an alarm in response to radiation from the Sun, so it can easily be used both indoors and outdoors.

UV detectors are sensitive to most fires, including hydrocarbons, metals, sulfur, hydrogen, hydrazine, and ammonia. Arc welding, electrical arcs, lightning, X-rays used in nondestructive metal testing equipment (though this is highly unlikely), and radioactive materials can produce levels that will activate a UV detection system. The presence of UV-absorbing gases and vapors will attenuate the UV radiation from a fire, adversely affecting the ability of the detector to "see" a flame. Likewise, the presence of an oil mist in the air or an oil film on the detector window will have the same effect.

Curing of adhesives and coatings

Certain adhesives and coatings are formulated with photoinitiators. When exposed to the correct wavelengths of UV light, polymerisation occurs, and so the adhesives harden or cure. Usually, this reaction is very quick, a matter of a few seconds. Applications include glass and plastic bonding, and the coating of wood flooring.

Optical spectrum

(Redirected from Visible spectrum)

The optical spectrum (light or visible spectrum) is the portion of the electromagnetic spectrum that is visible to the human eye. There are no exact bounds to the optical spectrum; a typical human eye will respond to wavelengths from 400 to 700 nm, although some people may be able to perceive wavelengths from 380 to 780 nm. A light-adapted eye typically has its maximum sensitivity at ~555 nm, in the yellow region of the optical spectrum.

Wavelengths visible to the eye are defined by the spectral range of the "optical window", the region of the electromagnetic spectrum which passes largely unattenuated through the Earth's atmosphere (although blue light is scattered more than red light, which is the reason the sky is blue). Electromagnetic radiation outside the optical wavelength range is almost entirely absorbed by the atmosphere.

Contents [showhide]

1 Historical use of the term

2 Explanation of Newton's experiment

3 Spectroscopy

4 See also

Historical use of the term

Sir Isaac Newton first used the Latin word spectrum (appearance or apparition) in print in 1671. He was describing the phenomenon of colored bands dispersing from white sunlight passing through a prism.

Explanation of Newton's experiment

When a beam of sunlight strikes the face of a glass prism at an angle, some is reflected and some of the beam passes into the glass. All light travels at the same speed in a vacuum, but in transparent matter different colors (frequencies) move at different speeds. Red light moves more quickly in glass than violet light and it bends (refracts) less sharply. A triangular prism is shaped to bend the light twice, and disperse it as much as possible. The result is the spectrum of colors.


The scientific study of objects based on the spectrum of the light they emit is called spectroscopy. One particularly important application of spectroscopy is in astronomy, where spectroscopy is essential for analysing the properties of distant objects. Typically, astronomical spectroscopy utilises high-dispersion diffraction gratings to observe spectra at very high spectral resolutions. The first exoplanets to be discovered were found by analysing the doppler shift of stars at such high resolution that variations in their radial velocity as small as a few metres per second could be detected - the presence of planets was revealed by their gravitational influence on the motion of the stars analysed.


Frequency is the measurement of the number of times that a repeated event occurs per unit time. To calculate the frequency, one fixes a time interval, counts the number of occurrences of the event within that interval, and then divides this count by the length of the time interval.

In SI units, the result is measured in hertz (Hz) after the German physicist, Heinrich Rudolf Hertz. 1 Hz means that an event repeats once per second. Other units that have been used to measure frequency include: cycles per second, revolutions per minute (rpm). Heart rate is measured in beats per minute.

An alternative method to calculate frequency is to measure the time between two consecutive occurrences of the event (the period) and then compute the frequency as the reciprocal of this time:

f = \frac{1}{T}

where T is the period.

Contents [showhide]

1 Frequency of waves

2 Examples

3 See also

4 External links

Frequency of waves

Measuring the frequency of sound, electromagnetic waves (such as radio or light), electrical signals, or other waves, the frequency in hertz is the number of cycles of the repetitive waveform per second. If the wave is a sound, frequency is what characterizes its pitch.

Frequency has an inverse relationship to the concept of wavelength. The frequency f is equal to the speed v of the wave divided by the wavelength λ (lambda) of the wave:

f = \frac{v}{\lambda}

In the special case of electromagnetic waves moving through a vacuum, then v = c, where c is the speed of light in a vacuum, and this expression becomes:

f = \frac{c}{\lambda}

NOTE: When waves travel from one medium to another, their frequency remains more or less the same - only their wavelength changes.



  • The frequency of the standard pitch tone A above middle C is nowadays set at 440Hz.ogg that is 440 cycles per second (or slightly higher) and known as concert pitch, after which an orchestra is tuned.
  • A baby can hear tones with oscillations up to approximately 20,000 Hz, but these frequencies become impossible to hear at maturity.
  • In Europe the frequency of the alternating current is 50 Hz (close to the tone G), with 230 V of rated voltage.
  • In North America the frequency of the alternating current is 60 Hz (close to the tone B flat), with 117 V of rated voltage.


The wavelength is the distance between repeating units of a wave pattern. It is commonly designated by the Greek letter lambda (λ).

In a sine wave, the wavelength is the distance between peaks:


The x axis represents distance, and I would be some varying quantity (for instance air pressure for a sound wave or strength of the electric or magnetic field for light), at a given point in time as a function of x.

Wavelength λ has an inverse relationship to frequency f, the number of peaks to pass a point in a given time. The wavelength is equal to the speed of the wave type divided by the frequency of the wave. When dealing with electromagnetic radiation in a vacuum, this speed is the speed of light c, for signals (waves) in air, this is the speed of sound in air. The relationship is given by:


λ = wavelength of a sound wave or electromagnetic wave

c = speed of light in vacuum = 299,792.458 km/s ~ 300 000 km/s = 300,000,000 m/s or

c = speed of sound in air = 343 m/s at 20 °C (68 °F)

f = frequency of the wave

For radio waves this relationship is approximated with the formula: wavelength (in metres) = 300 / frequency (in megahertz).

When light waves (and other electromagnetic waves) enter a medium, their wavelength is reduced by a factor equal to the refractive index n of the medium but the frequency of the wave is unchanged. The wavelength of the wave in the medium, λ' is given by:


λ0 is the vacuum wavelength of the wave

Wavelengths of electromagnetic radiation, no matter what medium they are travelling through, are usually quoted in terms of the vacuum wavelength, although this is not always explicitly stated.

Louis-Victor de Broglie discovered that all particles with momentum have a wavelength associated with their quantum mechanical wavefunction, called the de Broglie wavelength. For a relativistic particle, this wavelength is given by

\lambda = \frac{h}{p} = \frac {h}{{m}{v}} \sqrt{1 - \frac{v^2}{c^2}}


h is Planck's constant

p is the particle's momentum

m is the particle's mass

v is the particle's velocity

The greater the energy, the larger the frequency and the shorter (smaller) the wavelength. Given the relationship between wavelength and frequency, it follows that short wavelengths are more energetic than long wavelengths



A light-emitting diode (LED) is a semiconductor device that emits incoherent monochromatic light when electrically biased in the forward direction. This effect is a form of electroluminescence. The color of the emitted light depends on the chemical composition of the semiconducting material used, and can be near-ultraviolet, visible or infrared. Nick Holonyak Jr. (1928– ) of the University of Illinois at Urbana-Champaign developed the first practical visible-spectrum LED in 1962.[1]